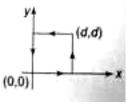
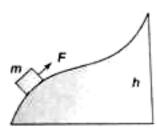


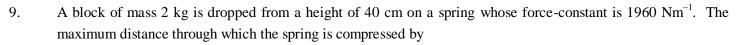
Max. Marks: 60 Date: 16.10.2022


JB 2 MR BATCH (SET A) PHYSICS : DCT

Topics: Work Energy Power


1.		mass 1000 kg acce e during this speed i		•	o a velo	city of 54 km/h in 5	5 s. The	average power of the			
	(a)	2000 W	(b)	45000 W	(c)	2250 W	(d)	22500 W			
 1. 2. 3. 4. 	•		•	zontal ground with so		•	, ,	of its kinetic energy is			
	(a)	$\frac{v_0}{2gt_0}$	(b)	$\frac{v_0}{4gt_0}$	(c)	$\frac{3v_0}{4gt_0}$	(d)	$\frac{v_0}{gt_0}$			
3.	If a number of forces act on a body and the body is in static or dynamic equilibrium, then:										
	(a)	a) work done by any individual force must be zero									
	(b)	net work done by all the forces is +ve									
	(c)	net work done by	all the f	Force is –ve							
	(d)	net work done by	all the f	Forces is zero							
4.		A body of mass m kg is lifted by a man to a height of one metre in 30 s. Another man lifts the same mass to the same height in 60 s. The work done by them are in the ratio									
	(a)	1:2	(b)	1:1	(c)	2:1	(d)	4:1			

- 5. A force $F = (5\hat{i} + 3\hat{j})$ newtons is applied over a particle which displaces it form its origin to the point $r = (2\hat{i} 1\hat{j})$ metres. The work done on the particle is
 - (a) -7 joules
- (b) + 13 joules
- (c) +7 joules
- (d) + 11 joules
- 6. A particle moved from position $\vec{r_1} = 3\hat{i} + 2\hat{j} 6k$ to position $\vec{r_2} = 14\hat{i} + 13\hat{j} + 9k$ under the action of a force $(4\hat{i} + \hat{j} + 3k)$ newtons. Find the work done.
 - (a) 10 J
- (b) 100 J
- (c) 0.01 J
- (d) 1 J
- 7. The work done by the force $= \vec{F} = A(y^2\hat{i} + 2x^2\hat{j})$, where A is a constant and x and y are in meters around the path shown is:



- (a) zero
- (b) Ad
- (c) Ad^2
- (d) Ad^3
- 8. A body of mass m is slowly pulled up the hill by a force F which at each point was directed along the tangent of the trajectory as shown in figure. All surfaces are smooth. Find the work performed by this force.

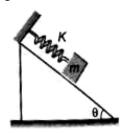
- (a) mgl
- (b) mgl
- (c) mgh
- (d) zero

- (a) 5 cm
- (b) 15 cm
- (c) 20 cm
- (d) 10 m

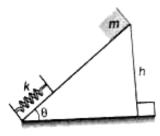
10. A slab S of mass m is released from a height h₀ from the top of a spring of force constant k. The maximum compression x of the spring is given by the equation

(a)
$$mgh_0 = \frac{1}{2}kx^2$$

(b)
$$mg(h_0 - x) = \frac{1}{2}kx^2$$


(c)
$$mgh_0 = \frac{1}{2}k(h_0 + x)^2$$

(d)
$$mg(h_0 + x) = \frac{1}{2}kx^2$$


- 11. A pump is required to lift 800 kg of water per minute from a 10 m deep well and eject it with speed of 20 m/s. The required power in watts of the pump will be
 - (a) 6000
- (b) 4000
- (c) 5000
- (d) 8000
- 12. A ball is dropped onto a floor a height of 10 m. If 20% of its initial energy is lost, then the height of bounce is
 - (a) 2 m
- (b) 4 m
- (c) 8 m
- (d) 6.4 m

13. A system of wedge and block as shown in figure, is released with the spring in its natural length. All surfaces are frictionless. Maximum elongation in the spring will be

- (a) $\frac{2mg\sin\theta}{K}$
- (b) $\frac{\text{mg sin }\theta}{K}$
- (c) $\frac{4mg\sin\theta}{K}$
- (d) $\frac{\text{mg sin }\theta}{2K}$
- 14. A body of mass m is released from a height h on a smooth inclined plane that is shown in the figure. The following can be true about the velocity of the block knowing that the wedge is fixed

- (a) v is highest when it just touches the spring
- (b) v is highest when it compresses the spring by some amount
- $(c) \qquad \text{$v$ is highest when the spring comes back to natural position} \\$
- $(d) \qquad v \ is \ highest \ at \ the \ maximum \ compression$
- 15. A spring of spring constant 5×10^3 N/m is stretched initially by 5 cm from the unstretched position. The work required to further stretch the spring by another 5 cm is
 - (a) 6.25 N-m
- (b) 12.50 N-m
- (c) 18.75 N-m
- (d) 25.00 N-m

Max Marks: 60 Date: 16.10.2022

JB 2 MR BATCH CHEMISTRY : DCT SET - A

Topic: Atomic Structure + Mole Concept + Periodic

16.	Atomic number and mass number of an element M are 25 and 52 respectively. The number of electrons, protons and neutrons in M^{+2} ion are respectively									
	(a)	25, 25 and 27	(b)	25, 27 and 25	(c)	27, 25 and 27	(d)	23, 25 and 27		
17.	The number of orbitals in the fourth principal quantum number will be									
	(a)	4	(b)	8	(c)	12	(d)	16		
18.		ergy absorbed by earth and the kinetic energy			nce is 4.	$4 \times 10^{-19} \text{J}$ and bond	energy p	per molecule is $4.0 \times$		
	(a)	$2.0\times10^{-20}\mathrm{J}$	(b)	$2.2\times10^{-19}\mathrm{J}$	(c)	$2.0\times10^{-19}\mathrm{J}$	(d)	$4.0 \times 10^{-20} \mathrm{J}$		
19.	Which	of the following 3d	orbitals	has electron density	along all	three axes?				
	(a)	$3d_{xy}$	(b)	$3d_{yz}$	(c)	$3d_{z^2}$	(d)	$3d_{zx}$		
20.	The nu	mber of nucleons ir	n chlorin	e-37 is						
	(a)	17	(b)	20	(c)	54	(d)	37		
21.	Planck	's constant has the s	same din	nensions as that of						
	(a)	power	(b)	work	(c)	radiant energy	(d)	angular momentum		
22.	Which	of the following sea	ries of tr	25, 27 and 25 (c) 27, 25 and 27 (d) 23, 25 and 27 th principal quantum number will be 8 (c) 12 (d) 16 lecule (A ₂) of a substance is 4.4×10^{-19} J and bond energy per molecule is 4.0×10^{-19} J (d) 4.0×10^{-20} J s has electron density along all three axes? 3dyz (c) 3dzz (d) 3dzz ne-37 is 20 (c) 54 (d) 37 mensions as that of work (c) radiant energy (d) angular momentum ransitions in the spectrum of hydrogen atom falls in visible region? Balmer series (c) Paschen series (d) Brackett series						
	(a)	Lyman series	(b)	Balmer series	(c)	Paschen series	(d)	Brackett series		
23.	The rat	tio of ionization ene	rgy of H	I and Be ⁺³ is						
	(a)	1:4	(b)	1:8	(c)	1:16	(d)	16:1		
24.	O_2^{2-} is	the symbol of	ion.							
	(a)	Oxide	(b)	Super	(c)	Peroxide	(d)	Monoxide		

25. Statement I: NaNO ₃ has no definite molecule	25.	Statement	I: NaNO3 ha	as no definite	molecule
---	-----	-----------	-------------	----------------	----------

Statement II: Its formula mass is 85.

- (a) If Statement I is true, Statement II is true, Statement II is the correct explanation of statement I.
- (b) If Statement I is true, Statement II is true, Statement II is not the correct explanation for Statement I.
- (c) Statement I is true but statement II is false.
- (d) Statement I is false but statement II is true.
- 26. Which of the following is a compound
 - (a) Diamond
- (b) $Salt + H_2O$
- (c) Washing soda
- (d) Ca

- 27. Physical state of water at 273 K is
 - (a) Solid
- (b) Liquid
- (c) Gas
- (d) Both (a) and (b)
- 28. The outer most orbit of an element X is partially filled with electrons in 's' and 'p' subshells. The element is
 - (a) An inert gas

(b) A representative element

(c) A transition element

(d) An inner transition element

- 29. A member of Lanthanide
 - (a) Caesium
- (b) Lanthanum
- (c) Neoybium
- (d) Lutetium

30. Match the following.

Type-I	Type-II	
Series	Elements	
A) 3d	1) Sc (21) to Zn (30)	0.
B) 4d	2) La (57), Hf (72) to Hg (80)	
C) 5d	3) Y (39) to Cd (48)	
D) 6d	4) Ac (89), Rf (104) to Mt (109)	

(a) A-l, B-3, C-2, D-4 (b)

A-2, B-3, C-l, D-4 (c)

) A-3, B-1, C-2, D-4 (d)

A-4, B-2, C-3, D-1

* * * * *

Max Marks: 60 Date: 16.10.2022

JB 2 MR BATCH PHYSICS: DCT SET - A ANSWER KEY Topics: Work Energy Power

1.	(d)	2.	(a)	3.	(d)	4.	(b)	5.	(c)
6.	(b)	7.	(d)	8.	(c)	9.	(d)	10.	(d)
11.	(b)	12.	(c)	13.	(a)	14.	(b)	15.	(c)

Max Marks: 60 Date: 16.10.2022

JB 2 MR BATCH CHEMISTRY: DCT SET - A ANSWER KEY Topic: Atomic Structure + Mole Concept + Periodic

16.	(d)	17.	(d)	18.	(a)	19.	(c)	20.	(d)
21.	(d)	22.	(b)	23.	(c)	24.	(c)	25.	(b)
26.	(c)	27.	(d)	28.	(b)	29.	(d)	30.	(a)